Differentiability criteria and harmonic functions on $B\sp{n}$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIFFERENTIABILITY OF p-HARMONIC FUNCTIONS ON METRIC MEASURE SPACES

We study p-harmonic functions on metric measure spaces, which are formulated as minimizers to certain energy functionals. For spaces supporting a p-Poincaré inequality, we show that such functions satisfy an infinitesmal Lipschitz condition almost everywhere. This result is essentially sharp, since there are examples of metric spaces and p-harmonic functions that fail to be locally Lipschitz co...

متن کامل

On Differentiability of Volume Time Functions

We show differentiability of a class of Geroch’s volume functions on globally hyperbolic manifolds. Furthermore, we prove that every volume function satisfies a local anti-Lipschitz condition over causal curves, and that locally Lipschitz time functions which are locally antiLipschitz can be uniformly approximated by smooth time functions with timelike gradient. Finally, we prove that in stably...

متن کامل

On differentiability of symmetric matrix valued functions

With every real valued function, of a real argument, can be associated a matrix function mapping a linear space of symmetric matrices into itself. In this paper we study directional differentiability properties of such matrix functions associated with directionally differentiable real valued functions. In particular, we show that matrix valued functions inherit semismooth properties of the corr...

متن کامل

Differentiability of Functions of MatricesMatrix Functions DIFFERENTIABILITY OF FUNCTIONS OF MATRICES

A. Let f be a function on the set of diagonal n × n matrices, and let˜f be the unique extension of f to the set of symmetric n × n matrices invariant with respect to conjugation by orthogonal matrices. We show that˜f has the same regularity properties as f.

متن کامل

DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents

lim h→0 f(z + h)− f(z) h if this limit exists. If the derivative of f exists at z, we denote its value by f ′(z), and we say f isholomorphic at z. If f is holomorphic at every point of an open set U we say that f is holomorphic on U . This definition naturally leads to several basic remarks. First, the definition formally looks identical to the limit definition of a derivative of a function of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1983

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1983-0719001-9